Maps

Remove all filtering

88 Maps

Algae production in 2019

This map shows location of algae production by production method in the Nordic Arctic and Baltic Sea Region in 2019 Algae and seaweeds are gaining attention as useful inputs for industries as diverse as energy and human food production. Aquatic vegetation – both in the seas and in freshwater – can grow at several times the pace of terrestrial plants, and the high natural oil content of some algae makes them ideal for producing a variety of products, from cosmetic oils to biofuels. At the same time, algae farming has added value in potential synergies with farming on land, as algae farms utilise nutrient run-off and reduce eutrophication. In addition, aquatic vegetation is a highly versatile feedstock. Algae and seaweed thrive in challenging and varied conditions and can be transformed into products ranging from fuel, feeds, fertiliser, and chemicals, to third-generation sugar and biomass. These benefits are the basis for seaweed and algae emerging as one of the most important bioeconomy trends in the Nordic Arctic and Baltic Sea region. The production of algae for food and industrial uses has hence significant potential, particularly in terms of environmental impact, but it is still at an early stage. The production of algae (both micro- and macroalgae) can take numerous forms, as shown by this map. At least nine different production methods were identified in the region covered in this analysis. A total of 41 production sites were operating in Denmark, Estonia, the Faroe Islands, Iceland, Norway, Germany, and Sweden. Germany has by far the most sites for microalgae production, whereas Denmark and Norway have the most macroalgae sites.

Travel time by train from Copenhagen or Malmö

The travel times indicate the fastest morning connection outbound from Copenhagen Central Station or Malmö Central Station, departing after 6:30AMand arriving before 9:00AM. The station catchments are calculated by bicycle travel time for any time remaining beyond train travel. For instance, a 35-minute train ride and a 10-minute cycle ride results in a 45-minute total travel time. The shades of green indicate the travel time to other train stations and their surrounding areas in four main classes: up to 15 minutes, 16 to 30 minutes, 31 to 45 minutes and 46 to 60 minutes. The areas not highlighted in green on the map are further than one hour by train from either Copenhagen or Malmö main train stations. The map clearly shows that the vast majority of areas within the Capital Region of Denmark, a number of stations and areas which are part of the region of Zealand, for instance Slagelse and Næstved, as well as areas located along four main train corridors in Skåne (Malmö-Helsingborg, Malmö-Hässleholm, Malmö-Trelleborg and Malmö-Ystad) are within the one-hour travel time by train from/to Copenhagen and/or Malmö, thanks to the different train types (Öresund trains, regional trains and intercity trains). Areas of the GCR which are beyond the one-hour travel condition are the most northern part of the Capital Region of Denmark, the southern and western parts of Zealand (e.g. Kalundborg and Vordingborg) as well as most of the eastern half part of Skåne. In terms of population, the current situation provides this possibility to almost 3 million out of 4.3 million inhabitants, corresponding to 69% of the total population living in the Greater Copenhagen Region in 2020. The proportion of the total population increases to 75% when the region of Halland is excluded (as this was not initially part of the GCR when the…

Population change in Arctic settlements

The map provides an overview of the population change in Arctic settlements with 500 inhabitants or more during the period 2000 to 2017. The purple underlaying layer shows the extent of permafrost across the Arctic. The circles indicate settlements with 500 inhabitants or more and are proportional to the total population in 2017. Blue tones indicate population growth between 2000 and 2017, while red tones indicate population decline. Four zoomed-in maps show areas with high settlement density – Arctic Fennoscandia, Iceland, the Faroe Islands, and Alaska. In Alaska, population increased in the largest settlements between 2000 and 2017. The population decline in small settlements located far from the two large cities – Anchorage and Fairbanks – has been caused by outmigration, which has cancelled out the positive natural population growth. In the Canadian Arctic, most people live in a few settlements. Similar to Alaska, the population increased in the largest settlements and decreased in small settlements. Most of the smaller settlements in Arctic Fennoscandia have witnessed a population decline between 2000 and 2017, except in Norway. The dominant pattern in Fennoscandia is a population growth in larger settlements and a population decline in surrounding smaller settlements. This is similar to the pattern observed in the other Nordic Arctic countries – Iceland, Greenland, and the Faroe Islands. New inhabitants settled in the capitals (Reykjavik, Nuuk, and Torshavn) and regional centres, from both domestic and international locations, while settlements in sparsely populated areas are becoming less attractive to incomers. In the Russian Arctic, the regions can be divided into the oil and gas areas of the Khanty-Mansi and Yamal-Nenets, and other areas. The population is growing in the oil and gas areas and declining slowly in the others. Over 75% of the settlements have been shrinking throughout the 21st century, mainly because…